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THE DIFFERENCE MATRICES OF GENERALIZED
FIBONACCI AND LUCAS SEQUENCES

IK-PYO KIM

ABSTRACT. The difference sequence Aa = (Aao, Aai, Aas, .. .)T of a
sequence a = (ao, a1, az,.. .)T is defined by Aa; = aiy1 — a; for each
i=0,1,2,.... Let A'a = (A'ag, A'ay, Alas,...)T,i=0,1,2,..., be the
ith difference sequence defined inductively by A’a = A(A""'a) where
Aa = a. Let M®* = [my], (4,5 = 0,1,2,...) denote the difference
matrix of a whose ith row is the transpose of the ith difference sequence
and let H* denote an infinite Hankel matrix with a” as its first row.
The entries in M* satisfy the I-law defined by the recurrence relation
Mi j+1 = Mip1,;-++mij. In this paper, the I'-law is applied to examine the
recurrence relations of difference sequences of Fi; and Ly, where Fy, ;
and Ly ; are (k,1)-Fibonacci and (k, [)-Lucas sequences, respectively, for
positive real numbers k and [. Finally, we show that MF+ = P~ HF k.
and MYkt = P_llH[LN., where P is the Pascal matrix.
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1. INTRODUCTION
Fibonacci and Lucas sequences with the Golden Mean, 7 = 1+2—\/‘F’., have
long been of great interest in a wide range of fields, from Architecture to, Na-
ture, Art, and high energy particle physics, as well as in mathematics, such as

in number theory and combinatorics [5]. The sequence F = (Fy, Fy, Fy,...)T
defined by

=1 =1 F,=F, 1+ F,2(n>2)
is called the Fibonacci sequence and the sequence L = (Lo, L1, Lo, .. )T

defined by

Lo=2, L1=1, Lpn=Ly 1+ Ly2 (n>2)
is called the Lucas sequence [1, 4]. Various generalizations of the Fibonacci
and Lucas sequences have been introduced [3, 5, 6, 10]. For example, for

each positive real number k, the sequence Fy, = (Fj, 0, Fi.1, Fk 2, - - )T defined
by

(1) Fro=0, Fri=1, Fyn=kFyn_1+ Fppn_2 (n>2),

is the k-Fibonacci sequence [5]. By applying a difference relation to the
sequence, Falcon [6] introduced another generalized Fibonacci sequences as
follows.
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Definition 1.1. For each positive real number k, let ¥y denote the k-
Fibonacci sequence and let AFy,,, = Fj nr1 — Fin for a nonnegative integer
n. The sequence
A'Fy = (A'Fyo, A'Fyq, A'Fyo, .. )7,
defined inductively by A'Fy, = A(A™1Fy), where AOF;C' = Fy, is called the
ith difference sequence of Fy, for i > 0. For brevity, A'Fy, and A'Fy,,, will
be denoted by F,(:) and F,El;,, respectively. The difference sequences of Ly, can
be defined similarly.
Falcon [6] presented several formulae of the difference sequences of Fy,
including:
() _ @ (1)
. Flc,n+1 - ka,n + Fk,nfl'
: . -
o« B = (k-DFLY+ EL
(4) (i-1) (i-1)
b Z?:o kaj = FanH - Fk,ZO :
Furthermore, he investigated the first terms of the difference sequences of Fy,
which are applied to provide the k-Fibonacci Newton polynomial interpola-
tion with its generating functions. Motivated by (1) and Definition 1.1, we
consider generalizations of k-Fibonacci (Lucas) and the difference sequences
of k-Fibonacci (Lucas) sequences. Spinadel introduced these generalizations
[11] as a secondary Fibonacci sequence.

Definition 1.2. For a pair of positive real numbers k and I, the sequence
Fiot = (Fuen00 Fley s Fepyo - )"

is called the (k,l)-Fibonacci sequence defined by

(2)  Fapno=0, Fopi1=1 Fryn=kFriyn-1+EFrpns2 (n>2)

and the sequence
Lkt = (L(r,1),00 L), 1o Likypy,2s - - )T

is called the (k,l)-Lucas sequence defined by

B)  Lupno=2, Lepya =1 Leyyn = kL1 +1Lgpyn2 (n>2).

From (2) and (3), it readily follows that

of — 0y
(4) Fopyn=—"""
g1 — 09
and
1— 209 1— 20,
(5) Ligpym = of — oy,
g1 — 02 g1 — 02
where ¢y = EEvk+dl ”2“2*41 and oo = E=vk+dl V’2“2+41, respectively.

Definition 1.3. The sequence
A'Fpg = (A Flp,00 A Fropy 1. A Fp 2, - - e

defined inductively by AiFkvl = A(Ai‘leJ), where AOF;CJ =Fyy, is called
the ith difference sequence of Fi ;. The sequence

ALy = (A Ligpy,0 ALy 10 A Ligepy o, -7
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defined inductively by ALy, = A(A"'Ly;), where ALy = Ly, is called
the ith difference sequence of Ly, ;. For brevity, AiFkJ (AiLkJ) and AiF(k,l),n

(AL ),n) will be denoted by F,(;), (LS),) and F((,i?l),n (LEQJ),H), respectively.

Both the Fibonacci and Lucas sequences are naturally connected to the
Pascal matrix [3, 9], so we can easily guess that this would be the case for
their difference sequences. It is thus enticing to investigate the relationships
between the difference sequences of Fy; and Ly, ; and the Pascal matrix for a
pair of positive real numbers k and . The relationships allow us to obtain in-
depth results for the structures of (k,)-Fibonacci and (k, [)-Lucas difference
sequences. This paper is organized as follows. In section 2, general nota-
tion and definitions are given. In section 3, the recurrence relations of the
difference sequences of Fy; and Ly are examined by applying a recurrence
relation among entries in their difference matrices for a pair of positive real
numbers k and [. In section 4, the difference matrices of the (k,)-Fibonacci
and (k,[)-Lucas sequences are represented by using the Pascal matrix, a
Hankel matrix, and a Toeplitz matrix, which appear in problems entailing
power and trigonometric moments [7].

2. NOTATION AND DEFINITIONS

The following notation and conventions are used throughout the manu-
script:

e Infinite matrices have infinite number of rows ¢ and columns j, with
i,j €{0,1,...}.

e The binomial coefficient (“i choose j”) is denoted by (;) with the
convention that it equals 0 when 7 < j or 57 < 0.

o P= {(;)], (1,7 =0,1,...) denotes the (infinite) Pascal matriz.

e Infinite real sequences {x,} are identified with R* consisting of col-
umn vectors x = (zg,z1,22...)7 where R® is the infinite dimen-
sional real vector space.

e For a sequence a = (ag,a1,az,...)", Aa = (Aag, Aay, Aag,...)T de-
notes the difference sequence of a where Aa; = a;4+1 — a; for each i =
0,1,2,.... AFa = (AFag, AFay, AFay,...)T, k =0,1,2,..., denotes
the kth difference sequence defined inductively by Afa = A(AF1a),
where Aa = a. For brevity, A¥a and A¥a,, are denoted by a*) and
a%k) forn=0,1,2,....

The following appears in [6] without proof, so we present a simple proof for
completeness and later discussion.

Lemma 2.1. Let k,n be nonnegative integers. Then fora = (ag, a1, as,...)T

in R*°, we have
k k
ol =317 (5 Joneacs
=0 J

Proof. The proof proceeds by induction on k. If k = 0, then

a£?) = (71)0 (?))an = Qn,

117



118

[-P Kim

and we can commence the induction. Let & > 1. Then, since

(k-1
alf ™! = Z(—l)]( , )an+k—1—j
—~ j
j
and agrll) = ?;é(—l) (k; )an4k—j by the induction assumption, we have
a(k) (k+11) (k 1)

SRR TRUS  St1 o)

j=
k
Z ( )an+k —J>
§=0
and the proof is complete. O

For a sequence a = (ag, a1, as,...)T € R®, let M2 denote the difference
matrix of a defined by

al
6 Me = 2
(6) = 47T
and let a* = (ao, aé ), a(()z)7 ...)T, which is the first column of M®, denote the

dual sequence of a [8]. It is well known [1] that for each i =0, 1,2,.. .,

n nin [N n
R

which is used in the proof of one of our main results. For a sequence a, let
M? = [m;;]. Then it follows from the construction of the difference matrix
of a that the entries of M? satisfy the recurrence relation

(8) Mit1j +Mij = Mijg1

for i,j = 0,1,2,.... As entries of M?, the relative positions of the entries
Mit+1,4, Mij, Mij+1 in (8) is I'-shaped. Thus, we call the relation the I'-
law, and we call a matrix a ['-matrix if its entries satisfy the I'-law. The
difference matrix of a sequence is an example of I'-matrices. The I'-law in
the difference matrix of a sequence plays a pivotal role in later discussions.
We can guess that a [-matrix is related to a 7-matrix, which satisfies the
7-law [2]. Cheon et al. [2], showed that a 7-matrix can be represented by a
Toeplitz matrix with a generalized Pascal matrix. This provides motivation
to find a special matrix connected to the difference matrices. In the following
lemma, the original recurrence relation of Fy,;, and Ly is preserved in their
difference sequences, which Falcon showed for Fy,; [6].

Lemma 2.2. Let k and | be positive real numbers. For a pair of positive
integers i and n, the following holds:

(8) By i1 = REQy o+ LG 1
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)

(@) —.7@®
(b) L =kL (kD) n—1

(kl);n+1 (k,D)n
Proof. For any positive real numbers a, 3, k, and [, let a = (ag, a1, az,...)"
denote a sequence defined by
9) ap=q, a1 =, ap = kan—1 +lap—2, (n > 2).
For a nonnegative integer ¢, the recurrence relation of a is preserved in a(!)
since agl) = ap+1 — ag, agi)l = lay + kay+1 — a1, and ag_)z =lapy1 + k(lay +
kair1) — lag — kagy = kagl + lagl). This tells us that we begin with the
recurrence relation (9) of a sequence a, which is preserved in the difference
sequences of a, and implies the results. O

We directly obtain the following result from Lemma 2.2 by means of the
I-law. In the case of | = 1, the first clause is the result from Falcon [6].

Theorem 2.3. For a pair of positive integers i and n, the following holds:

@ _ (i-1) (i-1)
(a) F(/i,z),n = (k- 1)F(12,z),n + lF(i,z),n_p

(b) LEQJ)W = (k- l)LEZ_l;)n + ZL&’_Z){)?%1 where k and | are positive real

numbers.

Proof. We only prove the last clause because the other assertion can be

proven similarly. It follows from the I'-law and Lemma 2.2 that LE?l) Nt

Ly = Lijney = kL)) 1L, which implies the last clause. [

We next consider the following difference matrices of Fy; and Ly.

Definition 2.4. For positive real numbers k and , let Fy,; and Ly be the
(k,1)-Fibonacci and (k,1)-Lucas sequences, respectively. We call the two ma-
trices MFrL and M+ the difference matrices of Fi; and Ly, respectively.

Our goal is to investigate the recurrence relations among entries in MF#.
and M extending the work by [6] by applying the I-law to the entries
in M¥r! and MY+, Falcon’s result [6] are the recurrence relations and
sums among entries in MF+1. Finally, we show that MFrt = P~1HFk: and
MUkt = P-'HYs where H? is an infinite Hankel matrix with a’ as its
first row for a sequence a. This has direct consequences associated with the
difference sequences of Fy; and Ly.

3. THE DIFFERENCE MATRICES OF Fj; AND Ly

In this section, we show generalizations of the recurrence relations and
generating functions of k-Fibonacci sequences from Falcon [6]. We begin
with a simple recurrence relation for sums in MF+! and MU+, which is a
direct consequence from the I'-law.

Lemma 3.1. For positive real numbers k and l, let MFxt = [fi;] and M+1 =
(lij] fori,j7=0,1,2,.... Let n and t be nonnegative integers.
(a) Ift > 1, then Z?:o fij = fi—in+1 — fi—1,0 and Z?:o lej = li—1n41 —
li—10.

(b) Ift Z 0, then Z;L:() ft—jwj = ft—n,n+1 — ft+1,0 and Z;L:() lt—j,j =
li—nn+1 — lix1,0
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Proof. (a) Let t > 1. By the I'-law, we obtain fi; + fi—1; = fi—1,4+1 for
j=0,1,2,...,n. Thus, >0 (ftj + fe-1,) = >_j_g ft—1,j+1, which implies
that Z?:o ftj + fi—1,0 = fi—1,n+1. This proves the first case of part (a). For
the case of 7 lyj, the result is similarly obtained. (b) Using the I-law,
the result can be proven similarly. O

The following two theorems are generalizations of Lemma 3.1.

Theorem 3.2. For positive real numbers k and 1, let M¥rt = [fi;] and
MEwt = [I;;] fori,5 = 0,1,2,.... Letn, p, and t be nonnegative integers
with t > 1. Then we have

(a) j_o((B) fis + () freng + (B) frag + -+ () frapy) = frtnpe1 —
"o () fre1+50,

(b) Yo5_o((B)ley + (Dles1y + B)levay + -+ O)leapg) = ltpeprr —
>0 (Dle-1+50-

Proof. (a) The proof proceeds by induction on p with p > 0. For p = 0, the
result holds according to Lemma 3.1 (a), and we commence the induction.
Let p > 1. Based on the induction hypothesis, we have

S (Yo (0 Yoo (0

§=0
(10) o
= ft-1m+4p — Z (p . >ft—l+j70
—\ J
J
and
~((r-1 p—1 p-1
> << 0 >ft+1,j + ( 1 >ft+2,j Tt <p_ 1)ft+p,j>
§=0
(11) p1 -
= ftm+p — Z ( , )ft+j,0
—\ J
J
Since (pgl) + (?:}) = (1]’) for j =1,2,...,p— 1 and fi—1nip + fimtp =
ft—1,n+p+1 by the I'-law, we obtain the desired result from (10) and (11).
Clause (b) can be proven similarly. O
Theorem 3.3. For positive real numbers k and 1, let MFrl = [fi;] and
MErt =[] fori,j =0,1,2,.... Then for nonnegative integers n, p, and t,

(@) 3o((O) fimis + () frmjrrg + ) fjwg + - + () fjrp)
= ft—7z,n+p+1 - Z?:o (?) ft+1+j,07
(b) Sio((@)le—sg + (Dle—jr1y + Q)le—jrzg + -+ (le—j+pg)
= l—nntpr1 — 2jeo () lt+1450-
Proof. The results can be readily proven in the same manner as the proof

of Theorem 3.2. O

In the following theorem, we provide generating functions for rows in
MFrt and MUkt
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Theorem 3.4. For positive real numbers k and I, let MFF” = [f”] and
MUkt = [l”] fori,j =0,1,2,.... Let gh(z) = Z;io fija? and g} (z) =
> ieolija? fori=0,1,2,.... Then we have
i o1—1)i=(o2—1)t+(o1(01—1)—02(02—1)—k((c1—1)' = (g2 —1)*
(a) gp(z) = el b 1((;17132)(127%32:4322) (o1l ol )))x,

i o1—1)—t(oo—1)"+(s01(01—1) —toa(oa—1)—k(s(c1—1) —t(oa—1)*
(b) g (¢) = Aol tor N slen o) Filon obolon- s e

btvki+dl vlgz“‘landagzk_i Wwithlf202=s and 1 — 201 =t.

where o1 =
Proof. (a) For each i > 0,
gr(x) = fio + fax + fior® + fisa® - + fina" + -,

(12) k:L‘gi;‘(:L) = kfior + kfilxg + k?fizx?’ +---+ kfiflynl’n + -,

lm2g%(x) = lfi0£E2 + lfilx?’ + 4+ lfi_Qann + -
From Lemmas 2.2 and 13, it follows that gh(z) — kzgh(z) — l2?gh(z) =
fio + (fir — kfio)x, which implies that gi‘( ) = —2—']‘70-{(');;; Zf"’) . By Lemma
2.1 and (4), we obtain: For i =0,1,2,...,

i

fio = 1 Z(_l)j (Z'-)(Uij i) = (01 —1)" — (02 — 1)2.

g1 — O g|1 — O
1 255 J 1 2

By applying the I'-law to f;1, the result follows. Using Lemma 2.1 and (5),
clause (b) can be proven similarly. O

By applying the I'-law, we determine a recurrence relation for the con-
secutive three entries in a column of MFr! and M+t as follows, which also
generalizes the result of Falcon [6].

Lemma 3.5. For positive real numbers k and 1, let MFxt = [fi;] and MErt =
(li] fori,j =0,1,2,.... Then we have

(a) fira;=(+k—=1)fij+ (k= 2)fiy1;-

(b) livoj = (I+k— 1)l + (k= 2)lit1,5.
Proof. (a) Based on the I'-law and Lemma 2.2, we obtain fi;+ fi+1; = fij+1
and Ufi; + kfije1r = fij+1 + fixje1. Thus, five; = fir1j41 — fir; =

Ufij +kfijer— fij+1— fivrj = (+k—1)fij + (k—2) fiz1,;. Clause (b) can
be proven similarly. O

As indicated in Lemma 3.5, a form of (k,[)-Fibonacci (Lucas) sequences
results in (I+k— 1, k—2)-Fibonacci (Lucas) sequences by constructing M¥#.
and MEs: from Fy,; and Ly, respectively. Using Lemma 3.5, we provide
generating functions for columns in MF+: and M1 as follows.

Theorem 3.6. For positive real numbers k and 1, let MFr = [f?-j] and
MLk = [lij] fori,j = 0,1,2,.... Let gp(x) = 372, fij2) and gi,(x) =
Yo lijal for j=0,1,2,.... Then we have:

—0+(0] (01-1) —af (02— 1)~ (k—2) (0] —od))z
() gh(z) = oi-o} (:11 ?2)(1 (e G)Q o 1)scg)1 =
j
gL\T

(b) ( ) _ sal—t02+(sal(a1 1)— t02(0'2 1)— (k—2)(sa{—wg))m
(o1~02) (1= (k=2)2—(I+k~1)a?)
where o = Ktk +4l k A ond gy = k=VET+dl ”2“2+41 with 1 — 209 = s and 1 — 201 = t.
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Proof. (a) For each j > 0,

ge(z) = ij + frj@ + foja® + faa® o+ o+
(k — 2)zgh(z) = (k — 2) fojz + (k — Q)fljﬂv2 + (k= 2) foja® + -
(13) —I—(k 2) fo—1,j2" + -
(I +k — D)aPgh(z) = (1 +k — 1) foja° +(l+k—1)f1ﬂ; +4-
+(+k—1)fozz"+-.

From Lemma 3.5, it follows that g{; —(k— 2)mgF( x)—(I+k— l)az2g{;($) =

foj+(f1;—(k—2) foj)x, which implies that gF( x) = f"J(k(};l)’m_((Hi)f‘iJ)li. Thus,

the result can be obtained from (4). Using (5), clause (b) can be proven
similarly. O

4. THE STRUCTURE OF MFki! AND MLk

In this section, we investigate the structure of MFst and MY+ and the
relationship between these two matrices and the Pascal matrix using Hankel
and Toeplitz matrices. For a sequence ¢ = (¢, ¢y, ca,. . )T, let H® denote
the infinite Hankel matrix

&) C1 C2 ot Cp—1 Cp
C1 c2 C3 T Cn Cn+1
C2 C3 C4 0 Cptl o Cpy2
Cn—1 Cn  Cpy1 - C2p—2 C2p—1
Cn Cn+1 Cp42 0 C2p-—1 Can,

Let K, = [kij], (4,7 = 0,1,2,...,n) denote the (n+ 1) x (n + 1) reversal
matrix [7] defined by

b — 1, if j=n—1,
“J 71 0,  otherwise.

K, H¢ and HEK,, are Toeplitz matrices [7], where HE is the leading (n +
1) x (n+ 1) principal submatrix of H¢. The difference matrix of a sequence

is naturally related to the Pascal matrix P with an infinite Hankel matrix.
Lemma 4.1. Let P denote the Pascal matriz and let a = (ag,ay,as,...)".
Then,

M2 = P~'H® = DPDH?
where D = diag(1, -1,1,—1,...).

Proof. For each pair of nonnegative integers i,7 = 0,1,2,..., we have

a i i i 0 (1
(PMP®)i5 = a; (0) —l—a;-l) (1) +a§2) <2> +--~+a§)<i> = Qi+

by (7). Since a;+j = (H?);; and P~1 = DPD, the result follows. a
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The following two results, shed more light on the combinatorial rela-
tionship between the difference sequences of Fy; and Ly, and are direct
consequences of Lemma 4.1.

Theorem 4.2. Let P denote the Pascal matriz. Then we have:
(a) MFri = P—IHFI«.I’
(b) Mkt = p=LHLe,

Corollary 4.3. Let P, denote the (n+ 1) x (n + 1) Pascal matriz for n =
0,1,2,.... Then we have:

(a) MiH = PoIHD M = PR, TR,

(b) Mp™ = PrIHE = PrUK, TR
where for a sequence ¢ = (co,c1,ca,...)T, and TS is a Toeplitz matriz defined

by

Cn, Cn+l Cp+2 - Cop—1 Con
Cpn—1 Cn Cp+1 - Cop—2 Cop—1
Cn—2 Cp—1 Cn ot Cop—3 Cop—2
T¢ =
n — . . . .
C1 C2 Cc3 ce Cn Cn+1
L Co C1 C2 ot Cp—1 Cn |

with K,HE = T¢.

The following result associates the difference sequences of the (k, [)-Fibonacci
and (k,[)-Lucas sequences.

Corollary 4.4. Let P, denote the (n+ 1) x (n + 1) Pascal matriz for n =
0,1,2,.... Then we have:

(a) MEI«IMLI«I:P 1HFHP IHLM:P 1K, TFI«IP lKnTLkl
(b) My*'Mp*' = PoUHPS POIHE S = PrUK, Tos PrLK, ToM.
Proof. This directly follows from Corollary 4.3. 0

We conclude this section with the following direct consequences from the
previous three results.

. PHMSM and Panfk" are symmetric for n = 0,1,2,.
e For a pair of nonnegative integers i and j, Fiz )4 ; = (Z'gt) Flegyj—tt+
i+t\ (1) i+t\ pp(i+1) _ ;
(T Fy e+ GED Fliyyme (= 0,1,00m — ).
e For a pair of nonnegative integers i and j, Ly 1) i+j = th) Ly, j—tt+
i+t) 7 (1) i+t 7 (i+1) _ ;
(* )L(kﬁl),j—t 4t (§+t)L(k,l),j—t (t=0,1,...,n —1).
e For a pair of nonnegative integers ¢ and j,

F, L
(k,1),2 (k,0).3
Z (kl ZS 0—>1St 0—z
where

F z
5140 = zw“() kiest
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and

z

Lewn,g _ T+t ?

Si—05r = Z(—l)z <t>L(k,l),j+t-
t=0

e For a pair of nonnegative integers 7 and j,

n n
(4) () _ Likpy,z oFir).g
Z LienEen; = Z Si=0=i St=0—=
z=0 2=0

where

i )
Lied)s (1
S50 =3 (=1t (t) L1y 2+t
t=0
and

V4

Foen. s z

S0 = Z(_l)z+t <t>F(k,l),j+t~
=0
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