THE DIFFERENCE MATRICES OF GENERALIZED FIBONACCI AND LUCAS SEQUENCES

IK-PYO KIM

Abstract

The difference sequence $\Delta \mathbf{a}=\left(\Delta a_{0}, \Delta a_{1}, \Delta a_{2}, \ldots\right)^{T}$ of a sequence $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}, \ldots\right)^{T}$ is defined by $\Delta a_{i}=a_{i+1}-a_{i}$ for each $i=0,1,2, \ldots$. Let $\Delta^{i} \mathbf{a}=\left(\Delta^{i} a_{0}, \Delta^{i} a_{1}, \Delta^{i} a_{2}, \ldots\right)^{T}, i=0,1,2, \ldots$, be the i th difference sequence defined inductively by $\Delta^{i} \mathbf{a}=\Delta\left(\Delta^{i-1} \mathbf{a}\right)$ where $\Delta^{0} \mathbf{a}=\mathbf{a} . \quad$ Let $\mathbb{M}^{\mathbf{a}}=\left[m_{i j}\right],(i, j=0,1,2, \ldots)$ denote the difference matrix of a whose i th row is the transpose of the i th difference sequence and let $\mathbb{H}^{\mathbf{a}}$ denote an infinite Hankel matrix with \mathbf{a}^{T} as its first row. The entries in \mathbb{M}^{a} satisfy the Γ-law defined by the recurrence relation $m_{i, j+1}=m_{i+1, j}+m_{i j}$. In this paper, the Γ-law is applied to examine the recurrence relations of difference sequences of $\mathbf{F}_{k, l}$ and $\mathbf{L}_{k, l}$, where $\mathbf{F}_{k, l}$ and $\mathbf{L}_{k, l}$ are (k, l)-Fibonacci and (k, l)-Lucas sequences, respectively, for positive real numbers k and l. Finally, we show that $\mathbb{M}^{\mathbf{F}_{k, l}}=P^{-1} \mathbb{H}^{\mathbf{F}}$ 位l and $\mathbb{M}^{\mathbf{L}_{k, l}}=P^{-1} \mathbb{H}^{\mathbf{L}_{k, l}}$, where P is the Pascal matrix.

2010 Mathematics Subject Classification. 15B05, 11B39, 11B65.
Keywords and phrases. (k, l)-Fibonacci sequence, (k, l)-Lucas sequence, Difference sequence, Difference matrix.

1. Introduction

Fibonacci and Lucas sequences with the Golden Mean, $\tau=\frac{1+\sqrt{5}}{2}$, have long been of great interest in a wide range of fields, from Architecture to, Nature, Art, and high energy particle physics, as well as in mathematics, such as in number theory and combinatorics [5]. The sequence $\mathbf{F}=\left(F_{0}, F_{1}, F_{2}, \ldots\right)^{T}$ defined by

$$
F_{0}=1, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}(n \geq 2)
$$

is called the Fibonacci sequence and the sequence $\mathbf{L}=\left(L_{0}, L_{1}, L_{2}, \ldots\right)^{T}$ defined by

$$
L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}(n \geq 2)
$$

is called the Lucas sequence $[1,4]$. Various generalizations of the Fibonacci and Lucas sequences have been introduced $[3,5,6,10]$. For example, for each positive real number k, the sequence $\mathbf{F}_{k}=\left(F_{k, 0}, F_{k, 1}, F_{k, 2}, \ldots\right)^{T}$ defined by

$$
\begin{equation*}
F_{k, 0}=0, F_{k, 1}=1, F_{k, n}=k F_{k, n-1}+F_{k, n-2}(n \geq 2) \tag{1}
\end{equation*}
$$

is the k-Fibonacci sequence [5]. By applying a difference relation to the sequence, Falcon [6] introduced another generalized Fibonacci sequences as follows.

[^0]Definition 1.1. For each positive real number k, let \mathbf{F}_{k} denote the k Fibonacci sequence and let $\Delta F_{k, n}=F_{k, n+1}-F_{k, n}$ for a nonnegative integer n. The sequence

$$
\Delta^{i} \mathbf{F}_{k}=\left(\Delta^{i} F_{k, 0}, \Delta^{i} F_{k, 1}, \Delta^{i} F_{k, 2}, \ldots\right)^{T}
$$

defined inductively by $\Delta^{i} \mathbf{F}_{k}=\Delta\left(\Delta^{i-1} \mathbf{F}_{k}\right)$, where $\Delta^{0} \mathbf{F}_{k}=\mathbf{F}_{k}$, is called the ith difference sequence of \mathbf{F}_{k} for $i \geq 0$. For brevity, $\Delta^{i} \mathbf{F}_{k}$ and $\Delta^{i} F_{k, n}$ will be denoted by $\mathbf{F}_{k}^{(i)}$ and $F_{k, n}^{(i)}$, respectively. The difference sequences of \mathbf{L}_{k} can be defined similarly.

Falcon [6] presented several formulae of the difference sequences of \mathbf{F}_{k}, including:

- $F_{k, n+1}^{(i)}=k F_{k, n}^{(i)}+F_{k, n-1}^{(i)}$.
- $F_{k, n}^{(i)}=(k-1) F_{k, n}^{(i-1)}+F_{k, n-1}^{(i-1)}$.
- $\sum_{j=0}^{n} F_{k, j}^{(i)}=F_{k, n+1}^{(i-1)}-F_{k, 0}^{(i-1)}$.

Furthermore, he investigated the first terms of the difference sequences of \mathbf{F}_{k}, which are applied to provide the k-Fibonacci Newton polynomial interpolation with its generating functions. Motivated by (1) and Definition 1.1, we consider generalizations of k-Fibonacci (Lucas) and the difference sequences of k-Fibonacci (Lucas) sequences. Spinadel introduced these generalizations [11] as a secondary Fibonacci sequence.

Definition 1.2. For a pair of positive real numbers k and l, the sequence

$$
\mathbf{F}_{k, l}=\left(F_{(k, l), 0}, F_{(k, l), 1}, F_{(k, l), 2}, \ldots\right)^{T}
$$

is called the (k, l)-Fibonacci sequence defined by

$$
\begin{equation*}
F_{(k, l), 0}=0, F_{(k, l), 1}=1, F_{(k, l), n}=k F_{(k, l), n-1}+l F_{(k, l), n-2}(n \geq 2) \tag{2}
\end{equation*}
$$

and the sequence

$$
\mathbf{L}_{k, l}=\left(L_{(k, l), 0}, L_{(k, l), 1}, L_{(k, l), 2}, \ldots\right)^{T}
$$

is called the (k, l)-Lucas sequence defined by

$$
\begin{equation*}
L_{(k, l), 0}=2, L_{(k, l), 1}=1, L_{(k, l), n}=k L_{(k, l), n-1}+l L_{(k, l), n-2}(n \geq 2) \tag{3}
\end{equation*}
$$

From (2) and (3), it readily follows that

$$
\begin{equation*}
F_{(k, l), n}=\frac{\sigma_{1}^{n}-\sigma_{2}^{n}}{\sigma_{1}-\sigma_{2}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{(k, l), n}=\frac{1-2 \sigma_{2}}{\sigma_{1}-\sigma_{2}} \sigma_{1}^{n}-\frac{1-2 \sigma_{1}}{\sigma_{1}-\sigma_{2}} \sigma_{2}^{n} \tag{5}
\end{equation*}
$$

where $\sigma_{1}=\frac{k+\sqrt{k^{2}+4 l}}{2}$ and $\sigma_{2}=\frac{k-\sqrt{k^{2}+4 l}}{2}$, respectively.
Definition 1.3. The sequence

$$
\Delta^{i} \mathbf{F}_{k, l}=\left(\Delta^{i} F_{(k, l), 0}, \Delta^{i} F_{(k, l), 1}, \Delta^{i} F_{(k, l), 2}, \ldots\right)^{T}
$$

defined inductively by $\Delta^{i} \mathbf{F}_{k, l}=\Delta\left(\Delta^{i-1} \mathbf{F}_{k, l}\right)$, where $\Delta^{0} \mathbf{F}_{k, l}=\mathbf{F}_{k, l}$, is called the i th difference sequence of $\mathbf{F}_{k, l}$. The sequence

$$
\Delta^{i} \mathbf{L}_{k, l}=\left(\Delta^{i} L_{(k, l), 0}, \Delta^{i} L_{(k, l), 1}, \Delta^{i} L_{(k, l), 2}, \ldots\right)^{T}
$$

defined inductively by $\Delta^{i} \mathbf{L}_{k, l}=\Delta\left(\Delta^{i-1} \mathbf{L}_{k, l}\right)$, where $\Delta^{0} \mathbf{L}_{k, l}=\mathbf{L}_{k, l}$, is called the ith difference sequence of $\mathbf{L}_{k, l}$. For brevity, $\Delta^{i} \mathbf{F}_{k, l}\left(\Delta^{i} \mathbf{L}_{k, l}\right)$ and $\Delta^{i} F_{(k, l), n}$ $\left(\Delta^{i} L_{(k, l), n}\right)$ will be denoted by $\mathbf{F}_{k, l}^{(i)}\left(\mathbf{L}_{k, l}^{(i)}\right)$ and $F_{(k, l), n}^{(i)}\left(L_{(k, l), n}^{(i)}\right)$, respectively.

Both the Fibonacci and Lucas sequences are naturally connected to the Pascal matrix $[3,9]$, so we can easily guess that this would be the case for their difference sequences. It is thus enticing to investigate the relationships between the difference sequences of $\mathbf{F}_{k, l}$ and $\mathbf{L}_{k, l}$ and the Pascal matrix for a pair of positive real numbers k and l. The relationships allow us to obtain indepth results for the structures of (k, l)-Fibonacci and (k, l)-Lucas difference sequences. This paper is organized as follows. In section 2, general notation and definitions are given. In section 3, the recurrence relations of the difference sequences of $\mathbf{F}_{k, l}$ and $\mathbf{L}_{k, l}$ are examined by applying a recurrence relation among entries in their difference matrices for a pair of positive real numbers k and l. In section 4 , the difference matrices of the (k, l)-Fibonacci and (k, l)-Lucas sequences are represented by using the Pascal matrix, a Hankel matrix, and a Toeplitz matrix, which appear in problems entailing power and trigonometric moments [7].

2. Notation and definitions

The following notation and conventions are used throughout the manuscript:

- Infinite matrices have infinite number of rows i and columns j, with $i, j \in\{0,1, \ldots\}$.
- The binomial coefficient (" i choose j ") is denoted by $\binom{i}{j}$ with the convention that it equals 0 when $i<j$ or $j<0$.
- $P=\left[\binom{i}{j}\right],(i, j=0,1, \ldots)$ denotes the (infinite) Pascal matrix.
- Infinite real sequences $\left\{x_{n}\right\}$ are identified with \mathbb{R}^{∞} consisting of column vectors $\mathbf{x}=\left(x_{0}, x_{1}, x_{2} \ldots\right)^{T}$ where \mathbb{R}^{∞} is the infinite dimensional real vector space.
- For a sequence $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}, \ldots\right)^{T}, \Delta \mathbf{a}=\left(\Delta a_{0}, \Delta a_{1}, \Delta a_{2}, \ldots\right)^{T}$ denotes the difference sequence of a where $\Delta a_{i}=a_{i+1}-a_{i}$ for each $i=$ $0,1,2, \ldots \Delta^{k} \mathbf{a}=\left(\Delta^{k} a_{0}, \Delta^{k} a_{1}, \Delta^{k} a_{2}, \ldots\right)^{T}, k=0,1,2, \ldots$, denotes the k th difference sequence defined inductively by $\Delta^{k} \mathbf{a}=\Delta\left(\Delta^{k-1} \mathbf{a}\right)$, where $\Delta^{0} \mathbf{a}=\mathbf{a}$. For brevity, $\Delta^{k} \mathbf{a}$ and $\Delta^{k} a_{n}$ are denoted by $\mathbf{a}^{(k)}$ and $a_{n}^{(k)}$ for $n=0,1,2, \ldots$.
The following appears in [6] without proof, so we present a simple proof for completeness and later discussion.
Lemma 2.1. Let k, n be nonnegative integers. Then for $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}, \ldots\right)^{T}$ in \mathbf{R}^{∞}, we have

$$
a_{n}^{(k)}=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} a_{n+k-j} .
$$

Proof. The proof proceeds by induction on k. If $k=0$, then

$$
a_{n}^{(0)}=(-1)^{0}\binom{0}{0} a_{n}=a_{n}
$$

and we can commence the induction. Let $k \geq 1$. Then, since

$$
a_{n}^{(k-1)}=\sum_{j=0}^{k-1}(-1)^{j}\binom{k-1}{j} a_{n+k-1-j}
$$

and $a_{n+1}^{(k-1)}=\sum_{j=0}^{k-1}(-1)^{j}\binom{k-1}{j} a_{n+k-j}$ by the induction assumption, we have

$$
\begin{aligned}
a_{n}^{(k)} & =a_{n+1}^{(k-1)}-a_{n}^{(k-1)} \\
& =\sum_{j=0}^{k-1}(-1)^{j}\binom{k-1}{j} a_{n+k-j}-\sum_{j=0}^{k-1}(-1)^{j}\binom{k-1}{j} a_{n+k-1-j} \\
& =\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} a_{n+k-j},
\end{aligned}
$$

and the proof is complete.
For a sequence $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}, \ldots\right)^{T} \in \mathbf{R}^{\infty}$, let $\mathbb{M}^{\mathbf{a}}$ denote the difference matrix of a defined by

$$
\mathbb{M}^{\mathbf{a}}=\left[\begin{array}{c}
\mathbf{a}^{T} \tag{6}\\
\mathbf{a}^{(1)^{T}} \\
\mathbf{a}^{(2)^{T}} \\
\vdots
\end{array}\right]
$$

and let $\mathbf{a}^{\star}=\left(a_{0}, a_{0}^{(1)}, a_{0}^{(2)}, \ldots\right)^{T}$, which is the first column of $\mathbb{M}^{\mathbf{a}}$, denote the dual sequence of $\mathbf{a}[8]$. It is well known [1] that for each $i=0,1,2, \ldots$,

$$
\begin{equation*}
a_{n}=a_{0}\binom{n}{0}+a_{0}^{(1)}\binom{n}{1}+a_{0}^{(2)}\binom{n}{2}+\cdots+a_{0}^{(n)}\binom{n}{n}, \tag{7}
\end{equation*}
$$

which is used in the proof of one of our main results. For a sequence a, let $\mathbb{M}^{\mathbf{a}}=\left[m_{i j}\right]$. Then it follows from the construction of the difference matrix of \mathbf{a} that the entries of $\mathbb{M}^{\mathbf{a}}$ satisfy the recurrence relation

$$
\begin{equation*}
m_{i+1, j}+m_{i j}=m_{i, j+1} \tag{8}
\end{equation*}
$$

for $i, j=0,1,2, \ldots$ As entries of $\mathbb{M}^{\mathbf{a}}$, the relative positions of the entries $m_{i+1, j}, m_{i j}, m_{i, j+1}$ in (8) is Γ-shaped. Thus, we call the relation the Γ law, and we call a matrix a Γ-matrix if its entries satisfy the Γ-law. The difference matrix of a sequence is an example of Γ-matrices. The Γ-law in the difference matrix of a sequence plays a pivotal role in later discussions. We can guess that a Γ-matrix is related to a 7 -matrix, which satisfies the 7 -law [2]. Cheon et al. [2], showed that a 7 -matrix can be represented by a Toeplitz matrix with a generalized Pascal matrix. This provides motivation to find a special matrix connected to the difference matrices. In the following lemma, the original recurrence relation of $\mathbf{F}_{k, l}$, and $\mathbf{L}_{k, l}$ is preserved in their difference sequences, which Falcon showed for $\mathbf{F}_{k, l}[6]$.

Lemma 2.2. Let k and l be positive real numbers. For a pair of positive integers i and n, the following holds:
(a) $F_{(k, l), n+1}^{(i)}=k F_{(k, l), n}^{(i)}+l F_{(k, l), n-1}^{(i)}$,
(b) $L_{(k, l), n+1}^{(i)}=k L_{(k, l), n}^{(i)}+l L_{(k, l), n-1}^{(i)}$.

Proof. For any positive real numbers α, β, k, and l, let $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}, \ldots\right)^{T}$ denote a sequence defined by

$$
\begin{equation*}
a_{0}=\alpha, a_{1}=\beta, a_{n}=k a_{n-1}+l a_{n-2}, \quad(n \geq 2) \tag{9}
\end{equation*}
$$

For a nonnegative integer t, the recurrence relation of \mathbf{a} is preserved in $\mathbf{a}^{(1)}$ since $a_{t}^{(1)}=a_{t+1}-a_{t}, a_{t+1}^{(1)}=l a_{t}+k a_{t+1}-a_{t+1}$, and $a_{t+2}^{(1)}=l a_{t+1}+k\left(l a_{t}+\right.$ $\left.k a_{t+1}\right)-l a_{t}-k a_{t+1}=k a_{t+1}^{(1)}+l a_{t}^{(1)}$. This tells us that we begin with the recurrence relation (9) of a sequence a, which is preserved in the difference sequences of \mathbf{a}, and implies the results.

We directly obtain the following result from Lemma 2.2 by means of the Γ-law. In the case of $l=1$, the first clause is the result from Falcon [6].

Theorem 2.3. For a pair of positive integers i and n, the following holds:
(a) $F_{(k, l), n}^{(i)}=(k-1) F_{(k, l), n}^{(i-1)}+l F_{(k, l), n-1}^{(i-1)}$,
(b) $L_{(k, l), n}^{(i)}=(k-1) L_{(k, l), n}^{(i-1)}+l L_{(k, l), n-1}^{(i-1)}$ where k and l are positive real numbers.

Proof. We only prove the last clause because the other assertion can be proven similarly. It follows from the Γ-law and Lemma 2.2 that $L_{(k, l), n}^{(i)}+$ $L_{(k, l), n}^{(i-1)}=L_{(k, l), n+1}^{(i-1)}=k L_{(k, l), n}^{(i-1)}+l L_{(k, l), n-1}^{(i-1)}$, which implies the last clause.

We next consider the following difference matrices of $\mathbf{F}_{k, l}$ and $\mathbf{L}_{k, l}$.
Definition 2.4. For positive real numbers k and l, let $\mathbf{F}_{k, l}$ and $\mathbf{L}_{k, l}$ be the (k, l)-Fibonacci and (k, l)-Lucas sequences, respectively. We call the two matrices $\mathbb{M}^{\mathbf{F}_{k, l}}$ and $\mathbb{M}^{\mathbf{L}}$ k,l the difference matrices of $\mathbf{F}_{k, l}$ and $\mathbf{L}_{k, l}$, respectively.

Our goal is to investigate the recurrence relations among entries in $\mathbb{M}^{\mathbf{F}_{k, l}}$ and $\mathbb{M}^{\mathbf{L}_{k, l}}$, extending the work by [6] by applying the Γ-law to the entries in $\mathbb{M}^{\mathbf{F}_{k, l}}$ and $\mathbb{M}^{\mathbf{L}_{k, l}}$. Falcon's result [6] are the recurrence relations and sums among entries in $\mathbb{M}^{\mathbf{F}}{ }_{k, 1}$. Finally, we show that $\mathbb{M}^{\mathbf{F}_{k, l}}=P^{-1} \mathbb{H}^{\mathbf{F}_{k, l}}$ and $\mathbb{M}^{\mathbf{L}_{k, l}}=P^{-1} \mathbb{H}^{\mathbf{L}}$ k,l where $\mathbb{H}^{\mathbf{a}}$ is an infinite Hankel matrix with \mathbf{a}^{T} as its first row for a sequence \mathbf{a}. This has direct consequences associated with the difference sequences of $\mathbf{F}_{k, l}$ and $\mathbf{L}_{k, l}$.

3. The difference matrices of $\mathbf{F}_{k, l}$ and $\mathbf{L}_{k, l}$

In this section, we show generalizations of the recurrence relations and generating functions of k-Fibonacci sequences from Falcon [6]. We begin with a simple recurrence relation for sums in $\mathbb{M}^{\mathbf{F}_{k, l}}$ and $\mathbb{M}^{\mathbf{L}_{k, l}}$, which is a direct consequence from the Γ-law.

Lemma 3.1. For positive real numbers k and l, let $\mathbb{M}^{\mathbf{F}_{k, l}}=\left[f_{i j}\right]$ and $\mathbb{M}^{\mathbf{L}_{k, l}}=$ $\left[l_{i j}\right]$ for $i, j=0,1,2, \ldots$ Let n and t be nonnegative integers.
(a) If $t \geq 1$, then $\sum_{j=0}^{n} f_{t j}=f_{t-1, n+1}-f_{t-1,0}$ and $\sum_{j=0}^{n} l_{t j}=l_{t-1, n+1}-$ $l_{t-1,0}$.
(b) If $t \geq 0$, then $\sum_{j=0}^{n} f_{t-j, j}=f_{t-n, n+1}-f_{t+1,0}$ and $\sum_{j=0}^{n} l_{t-j, j}=$ $l_{t-n, n+1}-l_{t+1,0}$.

Proof. (a) Let $t \geq 1$. By the Γ-law, we obtain $f_{t j}+f_{t-1, j}=f_{t-1, j+1}$ for $j=0,1,2, \ldots, n$. Thus, $\sum_{j=0}^{n}\left(f_{t j}+f_{t-1, j}\right)=\sum_{j=0}^{n} f_{t-1, j+1}$, which implies that $\sum_{j=0}^{n} f_{t j}+f_{t-1,0}=f_{t-1, n+1}$. This proves the first case of part (a). For the case of $\sum_{j=0}^{n} l_{t j}$, the result is similarly obtained. (b) Using the Γ-law, the result can be proven similarly.

The following two theorems are generalizations of Lemma 3.1.
Theorem 3.2. For positive real numbers k and l, let $\mathbb{M}^{\mathbf{F}_{k, l}}=\left[f_{i j}\right]$ and $\mathbb{M}^{\mathbf{L}_{k, l}}=\left[l_{i j}\right]$ for $i, j=0,1,2, \ldots$ Let n, p, and t be nonnegative integers with $t \geq 1$. Then we have
(a) $\left.\sum_{j=0}^{n}\binom{p}{0} f_{t j}+\binom{p}{1} f_{t+1, j}+\binom{p}{2} f_{t+2, j}+\cdots+\binom{p}{p} f_{t+p, j}\right)=f_{t-1, n+p+1}-$ $\sum_{j=0}^{p}\binom{p}{j} f_{t-1+j, 0}$,
(b) $\left.\sum_{j=0}^{n}\binom{p}{0} l_{t j}+\binom{p}{1} l_{t+1, j}+\binom{p}{2} l_{t+2, j}+\cdots+\binom{p}{p} l_{t+p, j}\right)=l_{t-1, n+p+1}-$ $\sum_{j=0}^{p}\binom{p}{j} l_{t-1+j, 0}$.
Proof. (a) The proof proceeds by induction on p with $p \geq 0$. For $p=0$, the result holds according to Lemma 3.1 (a), and we commence the induction. Let $p \geq 1$. Based on the induction hypothesis, we have

$$
\begin{align*}
& \sum_{j=0}^{n}\left(\binom{p-1}{0} f_{t j}+\binom{p-1}{1} f_{t+1, j}+\cdots+\binom{p-1}{p-1} f_{t+p-1, j}\right) \\
& =f_{t-1, n+p}-\sum_{j=0}^{p-1}\binom{p-1}{j} f_{t-1+j, 0} \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{j=0}^{n}\left(\binom{p-1}{0} f_{t+1, j}+\binom{p-1}{1} f_{t+2, j}+\cdots+\binom{p-1}{p-1} f_{t+p, j}\right) \\
& =f_{t, n+p}-\sum_{j=0}^{p-1}\binom{p-1}{j} f_{t+j, 0} \tag{11}
\end{align*}
$$

Since $\binom{p-1}{j}+\binom{p-1}{j-1}=\binom{p}{j}$ for $j=1,2, \ldots, p-1$ and $f_{t-1, n+p}+f_{t, n+p}=$ $f_{t-1, n+p+1}$ by the Γ-law, we obtain the desired result from (10) and (11). Clause (b) can be proven similarly.

Theorem 3.3. For positive real numbers k and l, let $\mathbb{M}^{\mathbf{F}_{k, l}}=\left[f_{i j}\right]$ and $\mathbb{M}^{\mathbf{L}_{k, l}}=\left[l_{i j}\right]$ for $i, j=0,1,2, \ldots$. Then for nonnegative integers n, p, and t,
(a) $\sum_{j=0}^{n}\left(\binom{p}{0} f_{t-j, j}+\binom{p}{1} f_{t-j+1, j}+\binom{p}{2} f_{t-j+2, j}+\cdots+\binom{p}{p} f_{t-j+p, j}\right)$ $=f_{t-n, n+p+1}-\sum_{j=0}^{p}\binom{p}{j} f_{t+1+j, 0}$,
(b) $\sum_{j=0}^{n}\left(\binom{p}{0} l_{t-j, j}+\binom{p}{p} l_{t-j+1, j}+\binom{p}{2} l_{t-j+2, j}+\cdots+\binom{p}{p} l_{t-j+p, j}\right)$
$=l_{t-n, n+p+1}-\sum_{j=0}^{p}\binom{p}{j} l_{t+1+j, 0}$.
Proof. The results can be readily proven in the same manner as the proof of Theorem 3.2.

In the following theorem, we provide generating functions for rows in $\mathbb{M}^{\mathbf{F}_{k, l}}$ and $\mathbb{M}^{\mathbf{L}_{k, l}}$.

Theorem 3.4. For positive real numbers k and l, let $\mathbb{M}^{\mathbf{F}_{k, l}}=\left[f_{i j}\right]$ and $\mathbb{M}^{\mathbf{L}_{k, l}}=\left[l_{i j}\right]$ for $i, j=0,1,2, \ldots$ Let $g_{\mathbf{F}}^{i}(x)=\sum_{j=0}^{\infty} f_{i j} x^{j}$ and $g_{\mathbf{L}}^{i}(x)=$ $\sum_{j=0}^{\infty} l_{i j} x^{j}$ for $i=0,1,2, \ldots$. Then we have
(a) $g_{\mathbf{F}}^{i}(x)=\frac{\left(\sigma_{1}-1\right)^{i}-\left(\sigma_{2}-1\right)^{i}+\left(\sigma_{1}\left(\sigma_{1}-1\right)^{i}-\sigma_{2}\left(\sigma_{2}-1\right)^{i}-k\left(\left(\sigma_{1}-1\right)^{i}-\left(\sigma_{2}-1\right)^{i}\right)\right) x}{\left(\sigma_{1}-\sigma_{2}\right)\left(1-k x-l x^{2}\right)}$,
(b) $g_{\mathbf{L}}^{i}(x)=\frac{s\left(\sigma_{1}-1\right)^{i}-t\left(\sigma_{2}-1\right)^{i}+\left(s \sigma_{1}\left(\sigma_{1}-1\right)^{i}-t \sigma_{2}\left(\sigma_{2}-1\right)^{i}-k\left(s\left(\sigma_{1}-1\right)^{i}-t\left(\sigma_{2}-1\right)^{i}\right)\right) x}{\left(\sigma_{1}-\sigma_{2}\right)\left(1-k x-l x^{2}\right)}$
where $\sigma_{1}=\frac{k+\sqrt{k^{2}+4 l}}{2}$ and $\sigma_{2}=\frac{k-\sqrt{k^{2}+4 l}}{2}$ with $1-2 \sigma_{2}=s$ and $1-2 \sigma_{1}=t$.
Proof. (a) For each $i \geq 0$,

$$
\begin{align*}
g_{\mathbf{F}}^{i}(x) & =f_{i 0}+f_{i 1} x+f_{i 2} x^{2}+f_{i 3} x^{3} \cdots+f_{i n} x^{n}+\cdots, \\
k x g_{\mathbf{F}}^{i}(x) & =k f_{i 0} x+k f_{i 1} x^{2}+k f_{i 2} x^{3}+\cdots+k f_{i-1, n} x^{n}+\cdots, \tag{12}\\
l x^{2} g_{\mathbf{F}}^{i}(x) & =l f_{i 0} x^{2}+l f_{i 1} x^{3}++\cdots+l f_{i-2, n} x^{n}+\cdots
\end{align*}
$$

From Lemmas 2.2 and 13 , it follows that $g_{\mathbf{F}}^{i}(x)-k x g_{\mathbf{F}}^{i}(x)-l x^{2} g_{\mathbf{F}}^{i}(x)=$ $f_{i 0}+\left(f_{i 1}-k f_{i 0}\right) x$, which implies that $g_{\mathbf{F}}^{i}(x)=\frac{f_{i 0}+\left(f_{i 1}-k f_{i 0}\right) x}{1-k x-l x^{2}}$. By Lemma 2.1 and (4), we obtain: For $i=0,1,2, \ldots$,

$$
f_{i 0}=\frac{1}{\sigma_{1}-\sigma_{2}} \sum_{j=0}^{i}(-1)^{j}\binom{i}{j}\left(\sigma_{1}^{i-j}-\sigma_{2}^{i-j}\right)=\frac{\left(\sigma_{1}-1\right)^{i}-\left(\sigma_{2}-1\right)^{i}}{\sigma_{1}-\sigma_{2}}
$$

By applying the Γ-law to $f_{i 1}$, the result follows. Using Lemma 2.1 and (5), clause (b) can be proven similarly.

By applying the Γ-law, we determine a recurrence relation for the consecutive three entries in a column of $\mathbb{M}^{\mathbf{F}} \mathrm{F}_{k, l}$ and $\mathbb{M}^{\mathbf{L}_{k, l}}$ as follows, which also generalizes the result of Falcon [6].
Lemma 3.5. For positive real numbers k and l, let $\mathbb{M}^{\mathbf{F}_{k, l}}=\left[f_{i j}\right]$ and $\mathbb{M}^{\mathbf{L}_{k, l}}=$ $\left[l_{i j}\right]$ for $i, j=0,1,2, \ldots$ Then we have
(a) $f_{i+2, j}=(l+k-1) f_{i j}+(k-2) f_{i+1, j}$.
(b) $l_{i+2, j}=(l+k-1) l_{i j}+(k-2) l_{i+1, j}$.

Proof. (a) Based on the Γ-law and Lemma 2.2, we obtain $f_{i j}+f_{i+1, j}=f_{i, j+1}$ and $l f_{i j}+k f_{i, j+1}=f_{i, j+1}+f_{i+1, j+1}$. Thus, $f_{i+2, j}=f_{i+1, j+1}-f_{i+1, j}=$ $l f_{i j}+k f_{i, j+1}-f_{i, j+1}-f_{i+1, j}=(l+k-1) f_{i j}+(k-2) f_{i+1, j}$. Clause (b) can be proven similarly.

As indicated in Lemma 3.5, a form of (k, l)-Fibonacci (Lucas) sequences results in $(l+k-1, k-2)$-Fibonacci (Lucas) sequences by constructing $\mathbb{M}^{\mathbf{F}}{ }_{k, l}$ and $\mathbb{M}^{\mathbf{L}}{ }^{k, l}$ from $\mathbf{F}_{k, l}$ and $\mathbf{L}_{k, l}$, respectively. Using Lemma 3.5, we provide generating functions for columns in $\mathbb{M}^{\mathbf{F}_{k, l}}$ and $\mathbb{M}^{\mathbf{L}_{k, l}}$ as follows.
Theorem 3.6. For positive real numbers k and l, let $\mathbb{M}^{\mathbf{F}_{k, l}}=\left[f_{i j}\right]$ and $\mathbb{M}^{\mathbf{L}_{k, l}}=\left[l_{i j}\right]$ for $i, j=0,1,2, \ldots$ Let $g_{\mathbf{F}}^{j}(x)=\sum_{i=0}^{\infty} f_{i j} x^{j}$ and $g_{\mathbf{L}}^{j}(x)=$ $\sum_{i=0}^{\infty} l_{i j} x^{j}$ for $j=0,1,2, \ldots$ Then we have:
(a) $g_{\mathbf{F}}^{j}(x)=\frac{\sigma_{1}^{j}-\sigma_{2}^{j}+\left(\sigma_{1}^{j}\left(\sigma_{1}-1\right)-\sigma_{2}^{j}\left(\sigma_{2}-1\right)-(k-2)\left(\sigma_{1}^{j}-\sigma_{2}^{j}\right)\right) x}{\left(\sigma_{1}-\sigma_{2}\right)\left(1-(k-2) x-(l+k-1) x^{2}\right)}$,
(b) $g_{\mathbf{L}}^{j}(x)=\frac{s \sigma_{1}^{j}-t \sigma_{2}^{j}+\left(s \sigma_{1}^{j}\left(\sigma_{1}-1\right)-t \sigma_{2}^{j}\left(\sigma_{2}-1\right)-(k-2)\left(s \sigma_{1}^{j}-t \sigma_{2}^{j}\right)\right) x}{\left(\sigma_{1}-\sigma_{2}\right)\left(1-(k-2) x-(l+k-1) x^{2}\right)}$
where $\sigma_{1}=\frac{k+\sqrt{k^{2}+4 l}}{2}$ and $\sigma_{2}=\frac{k-\sqrt{k^{2}+4 l}}{2}$ with $1-2 \sigma_{2}=s$ and $1-2 \sigma_{1}=t$.

Proof. (a) For each $j \geq 0$,

$$
\begin{align*}
g_{\mathbf{F}}^{j}(x) & =f_{0 j}+f_{1 j} x+f_{2 j} x^{2}+f_{3 j} x^{3} \cdots+f_{n j} x^{n}+\cdots, \\
(k-2) x g_{\mathbf{F}}^{j}(x) & =(k-2) f_{0 j} x+(k-2) f_{1 j} x^{2}+(k-2) f_{2 j} x^{3}+\cdots \\
& +(k-2) f_{n-1, j} x^{n}+\cdots, \tag{13}\\
(l+k-1) x^{2} g_{\mathbf{F}}^{j}(x) & =(l+k-1) f_{0 j} x^{2}+(l+k-1) f_{1 j} x^{3}++\cdots \\
& +(l+k-1) f_{n-2, j} x^{n}+\cdots .
\end{align*}
$$

From Lemma 3.5, it follows that $g_{\mathbf{F}}^{j}(x)-(k-2) x g_{\mathbf{F}}^{j}(x)-(l+k-1) x^{2} g_{\mathbf{F}}^{j}(x)=$ $f_{0 j}+\left(f_{1 j}-(k-2) f_{0 j}\right) x$, which implies that $g_{\mathbf{F}}^{j}(x)=\frac{f_{0 j}+\left(f_{1 j}-(k-2) f_{0 j}\right) x}{1-(k-2) x-(l+k-1) x^{2}}$. Thus, the result can be obtained from (4). Using (5), clause (b) can be proven similarly.

4. The structure of $\mathbb{M}^{\mathbf{F}_{k, l}}$ and $\mathbb{M}^{\mathbf{L}_{k, l}}$

In this section, we investigate the structure of $\mathbb{M}^{\mathbf{F}_{k, l}}$ and $\mathbb{M}^{\mathbf{L}}$ k,l and the relationship between these two matrices and the Pascal matrix using Hankel and Toeplitz matrices. For a sequence $\mathbf{c}=\left(c_{0}, c_{1}, c_{2}, \ldots\right)^{T}$, let $\mathbb{H}^{\mathbf{c}}$ denote the infinite Hankel matrix

$$
\left[\begin{array}{ccccccc}
c_{0} & c_{1} & c_{2} & \cdots & c_{n-1} & c_{n} & \cdots \\
c_{1} & c_{2} & c_{3} & \cdots & c_{n} & c_{n+1} & \cdots \\
c_{2} & c_{3} & c_{4} & \cdots & c_{n+1} & c_{n+2} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
c_{n-1} & c_{n} & c_{n+1} & \cdots & c_{2 n-2} & c_{2 n-1} & \\
c_{n} & c_{n+1} & c_{n+2} & \cdots & c_{2 n-1} & c_{2 n} & \ddots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots .
\end{array}\right] .
$$

Let $K_{n}=\left[k_{i j}\right],(i, j=0,1,2, \ldots, n)$ denote the $(n+1) \times(n+1)$ reversal matrix [7] defined by

$$
k_{i, j}=\left\{\begin{array}{lr}
1, & \text { if } j=n-i \\
0, & \text { otherwise }
\end{array}\right.
$$

$K_{n} \mathbb{H}_{n}^{\mathbf{c}}$ and $\mathbb{H}_{n}^{\mathbf{c}} K_{n}$ are Toeplitz matrices [7], where $\mathbb{H}_{n}^{\mathbf{c}}$ is the leading $(n+$ $1) \times(n+1)$ principal submatrix of $\mathbb{H}^{\mathbf{c}}$. The difference matrix of a sequence is naturally related to the Pascal matrix P with an infinite Hankel matrix.

Lemma 4.1. Let P denote the Pascal matrix and let $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}, \ldots\right)^{T}$. Then,

$$
\mathbb{M}^{\mathbf{a}}=P^{-1} \mathbb{H}^{\mathbf{a}}=D P D \mathbb{H}^{\mathbf{a}}
$$

where $D=\operatorname{diag}(1,-1,1,-1, \ldots)$.
Proof. For each pair of nonnegative integers $i, j=0,1,2, \ldots$, we have

$$
\left(P \mathbb{M}^{\mathbf{a}}\right)_{i j}=a_{j}\binom{i}{0}+a_{j}^{(1)}\binom{i}{1}+a_{j}^{(2)}\binom{i}{2}+\cdots+a_{j}^{(i)}\binom{i}{i}=a_{i+j}
$$

by (7). Since $a_{i+j}=\left(\mathbb{H}^{\mathbf{a}}\right)_{i j}$ and $P^{-1}=D P D$, the result follows.

The following two results, shed more light on the combinatorial relationship between the difference sequences of $\mathbf{F}_{k, l}$ and $\mathbf{L}_{k, l}$, and are direct consequences of Lemma 4.1.
Theorem 4.2. Let P denote the Pascal matrix. Then we have:
(a) $\mathbb{M}^{\mathbf{F}_{k, l}}=P^{-1} \mathbb{H}^{\mathbf{F}_{k, l}}$,
(b) $\mathbb{M}^{\mathbf{L}_{k, l}}=P^{-1} \mathbb{H}^{\mathbf{L}_{k, l}}$.

Corollary 4.3. Let P_{n} denote the $(n+1) \times(n+1)$ Pascal matrix for $n=$ $0,1,2, \ldots$ Then we have:
(a) $\mathbb{M}_{n}^{\mathbf{F}_{k, l}}=P_{n}^{-1} \mathbb{H}_{n}^{\mathbf{F}_{k, l}}=P_{n}^{-1} K_{n} \mathbb{T}_{n}^{\mathbf{F}_{k, l}}$,
(b) $\mathbb{M}_{n}^{\mathbf{L}_{k, l}}=P_{n}^{-1} \mathbb{H}_{n}^{\mathbf{L}_{k, l}}=P_{n}^{-1} K_{n} \mathbb{T}_{n}^{\mathbf{L}_{k, l}}$
where for a sequence $\mathbf{c}=\left(c_{0}, c_{1}, c_{2}, \ldots\right)^{T}$, and $\mathbb{T}_{n}^{\mathbf{c}}$ is a Toeplitz matrix defined by

$$
\mathbb{T}_{n}^{\mathbf{c}}=\left[\begin{array}{cccccc}
c_{n} & c_{n+1} & c_{n+2} & \cdots & c_{2 n-1} & c_{2 n} \\
c_{n-1} & c_{n} & c_{n+1} & \cdots & c_{2 n-2} & c_{2 n-1} \\
c_{n-2} & c_{n-1} & c_{n} & \cdots & c_{2 n-3} & c_{2 n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
c_{1} & c_{2} & c_{3} & \cdots & c_{n} & c_{n+1} \\
c_{0} & c_{1} & c_{2} & \cdots & c_{n-1} & c_{n}
\end{array}\right]
$$

with $K_{n} \mathbb{H}_{n}^{\mathbf{c}}=\mathbb{T}_{n}^{\mathbf{c}}$.
The following result associates the difference sequences of the (k, l)-Fibonacci and (k, l)-Lucas sequences.

Corollary 4.4. Let P_{n} denote the $(n+1) \times(n+1)$ Pascal matrix for $n=$ $0,1,2, \ldots$ Then we have:
(a) $\mathbb{M}_{n}^{\mathbf{F}_{k, l}} \mathbb{M}_{n}^{\mathbf{L}_{k, l}}=P_{n}^{-1} \mathbb{H}_{n}^{\mathbf{F}_{k, l}} P_{n}^{-1} \mathbb{H}_{n}^{\mathbf{L}_{k, l}}=P_{n}^{-1} K_{n} \mathbb{T}_{n}^{\mathbf{F}_{k, l}} P_{n}^{-1} K_{n} \mathbb{T}_{n}^{\mathbf{L}_{k, l}}$,
(b) $\mathbb{M}_{n}^{\mathbf{L}_{k, l}} \mathbb{M}_{n}^{\mathbf{F}_{k, l}}=P_{n}^{-1} \mathbb{H}_{n}^{\mathbf{L}_{k, l}} P_{n}^{-1} \mathbb{H}_{n}^{\mathbf{F}_{k, l}}=P_{n}^{-1} K_{n} \mathbb{T}_{n}^{\mathbf{L}_{k, l}} P_{n}^{-1} K_{n} \mathbb{T}_{n}^{\mathbf{F}_{k, l}}$.

Proof. This directly follows from Corollary 4.3.
We conclude this section with the following direct consequences from the previous three results.

- $P_{n} \mathbb{M}_{n}^{\mathbf{F}_{k, l}}$ and $P_{n} \mathbb{M}_{n}^{\mathbf{L}_{k, l}}$ are symmetric for $n=0,1,2, \ldots$.
- For a pair of nonnegative integers i and $j, F_{(k, l), i+j}=\binom{i+t}{0} F_{(k, l), j-t}+$ $\binom{i+t}{1} F_{(k, l), j-t}^{(1)}+\cdots+\binom{i+t}{i+t} F_{(k, l), j-t}^{(i+t)}(t=0,1, \ldots, n-i)$.
- For a pair of nonnegative integers i and $j, L_{(k, l), i+j}=\binom{i+t}{0} L_{(k, l), j-t}+$ $\binom{i+t}{1} L_{(k, l), j-t}^{(1)}+\cdots+\binom{i+t}{i+t} L_{(k, l), j-t}^{(i+t)}(t=0,1, \ldots, n-i)$.
- For a pair of nonnegative integers i and j,

$$
\sum_{z=0}^{n} F_{(k, l), z}^{(i)} L_{(k, l), j}^{(z)}=\sum_{z=0}^{n} S_{t=0 \rightarrow i}^{F_{(k, l), z}} S_{t=0 \rightarrow z}^{L_{(k, l), j}}
$$

where

$$
S_{t=0 \rightarrow i}^{F_{(k, l), z}}=\sum_{t=0}^{i}(-1)^{i+t}\binom{i}{t} F_{(k, l), z+t}
$$

and

$$
S_{t=0 \rightarrow z}^{L_{(k, l), j}}=\sum_{t=0}^{z}(-1)^{z+t}\binom{z}{t} L_{(k, l), j+t}
$$

- For a pair of nonnegative integers i and j,

$$
\sum_{z=0}^{n} L_{(k, l), z}^{(i)} F_{(k, l), j}^{(z)}=\sum_{z=0}^{n} S_{t=0 \rightarrow i}^{L_{(k, l), z}} S_{t=0 \rightarrow z}^{F_{(k, l), j}}
$$

where

$$
S_{t=0 \rightarrow i}^{L_{(k, l), z}}=\sum_{t=0}^{i}(-1)^{i+t}\binom{i}{t} L_{(k, l), z+t}
$$

and

$$
S_{t=0 \rightarrow z}^{F_{(k, l), j}}=\sum_{t=0}^{z}(-1)^{z+t}\binom{z}{t} F_{(k, l), j+t}
$$

References

[1] R.A. Brualdi, Introductory Combinatorics, fourth ed., Prentice-Hall, Upper Saddle River, 2004.
[2] G.-S. Cheon, S.-G. Hwang, S.-H. Rim and S.-Z. Song, Matrices determined by a recurrence relation among entries, Linear Algebra Appl., 373 (2003) 89-99.
[3] G.-S. Choi, S.-G. Hwang, I.-P. Kim and B.L. Shader, (± 1)-Invariant sequences and truncated Fibonacci sequences, Linear Algebra Appl., 395 (2005) 303-312.
[4] L. Comtet, Advanced Combinatorics, Reidel, Dordrechet, 1974.
[5] S. Falcon, A. Plaza, On the Fibonacci k-numbers, Chaos, Solitons \& Fractals 32 (2007) 1615-1624.
[6] S. Falcon, The k-Fibonacci difference sequences, Chaos, Solitons \& Fractals 87 (2016) 153-157.
[7] R.A. Horn, C.R. Johnson, Matrix Analysis, second ed., Cambridge University Press, Cambridge, 2013.
[8] I.-P. Kim, A simple proof of a difference sequence Bull. Korean Math. Soc. 42 (2005) 851-853.
[9] I.-P. Kim, M.J. Tsatsomeros, Pascal eigenspaces and invariant sequences of the first or second kind, Preprint.
[10] G.-Y. Lee, G.-S. Kim, The linear algebra of k-Fibonacci matrix, Linear Algebra Appl., 373 (2003) 75-87.
[11] V.W. Spinadel, The metallic means family and mutifractal spectra, Nonlinear Analysis: Theory, Methods and Appl., 36 (1999) 721-745.

Department of Mathematics Education, Daegu University, Gyeongbuk, 38453, Republic of Korea

E-mail address: kimikpyo@daegu.ac.kr

[^0]: This work was supported by Daegu University Research Grant, 2012.

